Research progress on hyperspectral anomaly detection
نویسندگان
چکیده
éçèªç©ºèªå¤©ææ¯ä¸é¥æææ¯çä¸æåå±ï¼é¥æå½±åå¨è¯¸å¤é¢åçåºç¨ä¸ææå±ï¼å ¶ä¸é«å è°±å辨çé¥æå½±åå ·æâå¾è°±åä¸âçç¹ç¹ï¼å³è¯¥æ°æ®æ¢å å«äºå ·æ强大åºåæ§çå°ç©å 谱信æ¯ï¼åå å«äºä¸°å¯çå°ç©ç©ºé´ä½ç½®ä¿¡æ¯ï¼å æ¤é«å è°±æ°æ®å ·æé常大çåºç¨æ½åãé«å è°±å¼å¸¸ç®æ æ£æµé®é¢ï¼æ¯å¨å¯¹ç®æ å éªä¿¡æ¯æªç¥çåæä¸ï¼æ ¹æ®å è°±ä¸ç©ºé´ä¿¡æ¯å®ç°å¯¹åºåä¸çå¼å¸¸ç®æ çè¿è¡âç²âæ£æµï¼å æ¤å ¶å¨èµæºè°æ¥ãç¾å®³ææ´çé¢ååæ¥äºå·¨å¤§çä½ç¨ï¼æ¯é¥æé¢åé常éè¦çç 究课é¢ãæ¬æé对é«å è°±é¥æå½±åå¼å¸¸ç®æ æ£æµç 究æ¹åï¼é¦å æ»ç»éè¿°äºç®åé«å æ£æµé®é¢ç主è¦ç 究è¿å±ï¼æ ¹æ®ç®æ³åççä¸å对ç°æ主æµç®æ³è¿è¡äºåç±»ä¸æ»ç»ï¼ä¸»è¦åæäºåºäºç»è®¡å¦ãåºäºæ°æ®è¡¨è¾¾ãåºäºæ°æ®å解ãåºäºæ·±åº¦å¦ä¹ çä¸åçç§ç±»çæ¹æ³ï¼å¹¶å¯¹æ¯ç±»æ¹æ³çç¹ç¹è¿è¡åæãéåéè¿å¯¹ç°ææ¹æ³çè°ç ãåæä¸æ»ç»ï¼æåºäºæ°æ®åºæå±ãå¤æºæ°æ®èåãç®æ³å®ç¨åçé«å è°±å¼å¸¸æ£æµç 究æªæ¥åå±çä¸ä¸ªæ¹åã
منابع مشابه
3D Gabor Based Hyperspectral Anomaly Detection
Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...
متن کاملImpact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images
Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...
متن کاملAnomaly detection and compensation for hyperspectral imagery
Hyperspectral sensors observe hundreds or thousands of narrow contiguous spectral bands. The use of hyperspectral imagery for remote sensing applications is new and promising, yet the characterization and analysis of such data by exploiting both spectral and spatial information have not been extensively investigated thus far. A generic methodology is presented for detecting and compensating ano...
متن کاملAdaptive Target-scale-invariant Hyperspectral Anomaly Detection
Ground to ground, sensor to object viewing perspective presents a major challenge for autonomous window based object detection, since object scales at this viewing perspective cannot be approximated. In this paper, we present a fully autonomous parallel approach to address this challenge. Using hyperspectral (HS) imagery as input, the approach features a random sampling stage, which does not re...
متن کاملAnomaly Detection Algorithms for Hyperspectral Imagery
Nowadays the use of hyperspectral imagery specifically automatic target detection algorithms for these images is a relatively exciting area of research. An important challenge of hyperspectral target detection is to detect small targets without any prior knowledge, particularly when the interested targets are insignificant with low probabilities of occurrence. The specific characteristic of ano...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of remote sensing
سال: 2023
ISSN: ['1007-4619', '2095-9494']
DOI: https://doi.org/10.11834/jrs.20232405