Research progress on hyperspectral anomaly detection

نویسندگان

چکیده

éšç€èˆªç©ºèˆªå¤©æŠ€æœ¯ä¸Žé¥æ„ŸæŠ€æœ¯çš„ä¸æ–­å‘å±•ï¼Œé¥æ„Ÿå½±åƒåœ¨è¯¸å¤šé¢†åŸŸçš„åº”ç”¨ä¸æ–­æ‹“å±•ï¼Œå ¶ä¸­é«˜å ‰è°±åˆ†è¾¨çŽ‡é¥æ„Ÿå½±åƒå ·æœ‰â€œå›¾è°±åˆä¸€â€çš„ç‰¹ç‚¹ï¼Œå³è¯¥æ•°æ®æ—¢åŒ å«äº†å ·æœ‰å¼ºå¤§åŒºåˆ†æ€§çš„åœ°ç‰©å ‰è°±ä¿¡æ¯ï¼ŒåˆåŒ å«äº†ä¸°å¯Œçš„åœ°ç‰©ç©ºé—´ä½ç½®ä¿¡æ¯ï¼Œå› æ­¤é«˜å ‰è°±æ•°æ®å ·æœ‰éžå¸¸å¤§çš„åº”ç”¨æ½œåŠ›ã€‚é«˜å ‰è°±å¼‚å¸¸ç›®æ ‡æ£€æµ‹é—®é¢˜ï¼Œæ˜¯åœ¨å¯¹ç›®æ ‡å ˆéªŒä¿¡æ¯æœªçŸ¥çš„å‰æä¸‹ï¼Œæ ¹æ®å ‰è°±ä¸Žç©ºé—´ä¿¡æ¯å®žçŽ°å¯¹åŒºåŸŸä¸­çš„å¼‚å¸¸ç›®æ ‡çš„è¿›è¡Œâ€œç›²â€æ£€æµ‹ï¼Œå› æ­¤å ¶åœ¨èµ„æºè°ƒæŸ¥ã€ç¾å®³æ•‘æ´ç­‰é¢†åŸŸå‘æŒ¥äº†å·¨å¤§çš„ä½œç”¨ï¼Œæ˜¯é¥æ„Ÿé¢†åŸŸéžå¸¸é‡è¦çš„ç ”ç©¶è¯¾é¢˜ã€‚æœ¬æ–‡é’ˆå¯¹é«˜å ‰è°±é¥æ„Ÿå½±åƒå¼‚å¸¸ç›®æ ‡æ£€æµ‹ç ”ç©¶æ–¹å‘ï¼Œé¦–å ˆæ€»ç»“é˜è¿°äº†ç›®å‰é«˜å ‡æ£€æµ‹é—®é¢˜çš„ä¸»è¦ç ”ç©¶è¿›å±•ï¼Œæ ¹æ®ç®—æ³•åŽŸç†çš„ä¸åŒå¯¹çŽ°æœ‰ä¸»æµç®—æ³•è¿›è¡Œäº†åˆ†ç±»ä¸Žæ€»ç»“ï¼Œä¸»è¦åˆ†æˆäº†åŸºäºŽç»Ÿè®¡å­¦ã€åŸºäºŽæ•°æ®è¡¨è¾¾ã€åŸºäºŽæ•°æ®åˆ†è§£ã€åŸºäºŽæ·±åº¦å­¦ä¹ ç­‰ä¸åŒçš„ç§ç±»çš„æ–¹æ³•ï¼Œå¹¶å¯¹æ¯ç±»æ–¹æ³•çš„ç‰¹ç‚¹è¿›è¡Œåˆ†æžã€‚éšåŽé€šè¿‡å¯¹çŽ°æœ‰æ–¹æ³•çš„è°ƒç ”ã€åˆ†æžä¸Žæ€»ç»“ï¼Œæå‡ºäº†æ•°æ®åº“æ‹“å±•ã€å¤šæºæ•°æ®èžåˆã€ç®—æ³•å®žç”¨åŒ–ç­‰é«˜å ‰è°±å¼‚å¸¸æ£€æµ‹ç ”ç©¶æœªæ¥å‘å±•çš„ä¸‰ä¸ªæ–¹å‘ã€‚

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Gabor Based Hyperspectral Anomaly Detection

Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...

متن کامل

Impact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images

Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...

متن کامل

Anomaly detection and compensation for hyperspectral imagery

Hyperspectral sensors observe hundreds or thousands of narrow contiguous spectral bands. The use of hyperspectral imagery for remote sensing applications is new and promising, yet the characterization and analysis of such data by exploiting both spectral and spatial information have not been extensively investigated thus far. A generic methodology is presented for detecting and compensating ano...

متن کامل

Adaptive Target-scale-invariant Hyperspectral Anomaly Detection

Ground to ground, sensor to object viewing perspective presents a major challenge for autonomous window based object detection, since object scales at this viewing perspective cannot be approximated. In this paper, we present a fully autonomous parallel approach to address this challenge. Using hyperspectral (HS) imagery as input, the approach features a random sampling stage, which does not re...

متن کامل

Anomaly Detection Algorithms for Hyperspectral Imagery

Nowadays the use of hyperspectral imagery specifically automatic target detection algorithms for these images is a relatively exciting area of research. An important challenge of hyperspectral target detection is to detect small targets without any prior knowledge, particularly when the interested targets are insignificant with low probabilities of occurrence. The specific characteristic of ano...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of remote sensing

سال: 2023

ISSN: ['1007-4619', '2095-9494']

DOI: https://doi.org/10.11834/jrs.20232405